
Leis et. Al.

Presented by: Manoj Sharma

LeanStore: In-Memory Data Management Beyond
Main Memory

Basis

 Demand for low latency, higher processing speed for queries.

 Need for workloads to have higher throughput.

 Bottlenecks

 I/O Path

 Concurrent Execution

 Logging

PAGE 2

Tackling I/O Path

 I/O path is tightly coupled with OS

 Buffering

 Evolving storage technologies like using SDD.

PAGE 3

Tackling I/O Path

PRESENTATION TITLE PAGE 4

 Cutting down I/O
 Is it InMemory Database ?

Tackling Concurrent Execution

 What is a query ? -> Similar operation done on multiple data

 Generalize queries to run in parallel

 Leverage hardware advancements.

PAGE 5

Quick Insights

 Everything in-memory -> higher throughput.

 Concurrent Execution -> low latency.

 Do we have the fastest database ?

PAGE 6

In-memory databases Implementation – Just the beginning

PRESENTATION TITLE PAGE 7

 Underlying OS dependence - Memory management
 Use mmap ??
 Inmemory table layout.
 DataStructures for table mapping
 Hash Table vs B-tree
 Heavy index usage
 Concurrency -> increased latches

RoadMap

 In-Memory Database and Workloads

 Managing Data in-memory & cases

 Buffer Manager & Challenges

 LeanStore

 LeanStore Buffer Pool and Paging Overview

 Performance Evaluation

 Conclusion & Few Thoughts

PAGE 8

InMemory Database and workloads

 Everything in-mem

 Scaleout ?

 Increase RAM size

 RAM is still costly.

 Limited by Address bus size.

PAGE 9

Run time OS

0x0 

0xFFFF 

Data

InMemory Indexes

Pinned
Memory

Unpinned Mem

Run Time Memory

Managing data in-memory

 Gauge access patterns of data to have them in memory.

 Back to conventional memory management techniques – buffer management.

 No buffer management by H-Store, Hekaton, HANA etc.,

PAGE 10

Managing data in-memory – cases

 AntiCaching

 Microsoft’s Siberia

PAGE 11

Other Cases

 Swapping at page level granularity – HStore

 Hardware assisted access tracking – Hyper

 Optimized storage engines like Bw-Tree/LLAMA

 Graefe et al. Swizzling for buffer managers

PAGE 12

Buffer Manager - Challenges

 Granularity – chunk or page. (almost, similar terms)

 Handling References

 Page replacement strategy

 Page eviction

 Synchronization issues

 Address Translation

PAGE 13

Page - 3

Page - 2

Page - 1

….

P3->P2->P1-
>PZ

Page Y

LRU
List

Thread 1

Thread 2

Synch

Run Time Space

What is LeanStore ?

 LeanStore Overview

 Hold everything in-mem. B-tree layout for pages and pointers as references to data

 Granularity of operations – row level

 Modified buffer manager

 Goal - Inmemory databases to use disks avoiding slow parts of a disk based
database.

PAGE 14

Pointer Swizzling

 Use way to indicate if a page referred is in memory pool or on disk.

 A reference containing an in-memory pointer is called swizzled, one that stores an ondisk
page identifier is called unswizzled.

 Each page reference is 8 byte and is known as a swip.

if (MSB set) then

object in memory

else

object in disk

PAGE 15

Page Replacement Policy

 Conventional policies –

 LRU lists which have overhead of maintaining lists and references and memory

 Using Counters – Extra operations and other concurrency issues

 Random page selection for eviction

PAGE 16

Synchronization

 Pages are organized in a tree hierarchy

 Each page has only one parent, single reference.

 Avoid latches – supported by swips

PAGE 17

Handling Pages Effectively

 Identify pages to be evicted i.e., handle randomness

 Handle page eviction lists or order

 Handle concurrency during eviction

 Handling I/O

PAGE 18

LeanStore Page cycle

PAGE 19

LeanStore Page cycle – Identifying pages for eviction

PAGE 20

LeanStore Page cycle – Handling concurrent page access

PAGE 21

LeanStore Implementation

PAGE 22

 In place modifications
 For structural changes, policy is analogous to two phase locking
 Interleaving buffer frames with page content – cache coherence
 Reusing deleted pages via thread local cache
 Background task support for flushing modified pages
 I/O prefetching
 Hinting

Performance Analysis – In-memory

PAGE 23

Performance analysis – scale out : multiple cores, out of memory

PAGE 24

Performance analysis – Other Measurements

PAGE 25

Conclusion

As per me, in short - “A demand driven page in & out swap based buffer pool with
controlled paths of references and using minimalistic runtime memory.”

PRESENTATION TITLE PAGE 26

Few thoughts

 Pointer swizzling is tweaking unused bits in referenced pointers. Is this a limitation or
way of exploiting unused resources ?

 LeanStore provides page level granularity for holding data. With tuples how is it managed
? Chances are there that a given huge tuple can cross multiple pages and result in splitting
of it.

 LeanStore’s buffer pool : Does it guarantee fair eviction and data localisation ?

 Page Eviction : LRU vs randomly chosen page eviction. What is the guarantee that the
required data swaps in without blocks ?

 Need of the hour : “Hybrid” systems (Disk + In-Memory) Are not these analogous to
conventional databases with if’s and buts ? If yes, are we trying to over engineer
conventional dbs ? If no, what is making them different ?

PAGE 27

References

 Viktor Leis, Michael Haubenschild, Alfons Kemper, Thomas Neumann.
LeanStore: In-Memory Data Management beyond Main Memory. Proc. 34th IEEE
International Conference on Data Engineering, pages 185-196, 2018

 Pictures are taken from google images.

PAGE 28

