
Leis et. Al.

Presented by: Manoj Sharma

LeanStore: In-Memory Data Management Beyond
Main Memory

Basis

 Demand for low latency, higher processing speed for queries.

 Need for workloads to have higher throughput.

 Bottlenecks

 I/O Path

 Concurrent Execution

 Logging

PAGE 2

Tackling I/O Path

 I/O path is tightly coupled with OS

 Buffering

 Evolving storage technologies like using SDD.

PAGE 3

Tackling I/O Path

PRESENTATION TITLE PAGE 4

 Cutting down I/O
 Is it InMemory Database ?

Tackling Concurrent Execution

 What is a query ? -> Similar operation done on multiple data

 Generalize queries to run in parallel

 Leverage hardware advancements.

PAGE 5

Quick Insights

 Everything in-memory -> higher throughput.

 Concurrent Execution -> low latency.

 Do we have the fastest database ?

PAGE 6

In-memory databases Implementation – Just the beginning

PRESENTATION TITLE PAGE 7

 Underlying OS dependence - Memory management
 Use mmap ??
 Inmemory table layout.
 DataStructures for table mapping
 Hash Table vs B-tree
 Heavy index usage
 Concurrency -> increased latches

RoadMap

 In-Memory Database and Workloads

 Managing Data in-memory & cases

 Buffer Manager & Challenges

 LeanStore

 LeanStore Buffer Pool and Paging Overview

 Performance Evaluation

 Conclusion & Few Thoughts

PAGE 8

InMemory Database and workloads

 Everything in-mem

 Scaleout ?

 Increase RAM size

 RAM is still costly.

 Limited by Address bus size.

PAGE 9

Run time OS

0x0

0xFFFF

Data

InMemory Indexes

Pinned
Memory

Unpinned Mem

Run Time Memory

Managing data in-memory

 Gauge access patterns of data to have them in memory.

 Back to conventional memory management techniques – buffer management.

 No buffer management by H-Store, Hekaton, HANA etc.,

PAGE 10

Managing data in-memory – cases

 AntiCaching

 Microsoft’s Siberia

PAGE 11

Other Cases

 Swapping at page level granularity – HStore

 Hardware assisted access tracking – Hyper

 Optimized storage engines like Bw-Tree/LLAMA

 Graefe et al. Swizzling for buffer managers

PAGE 12

Buffer Manager - Challenges

 Granularity – chunk or page. (almost, similar terms)

 Handling References

 Page replacement strategy

 Page eviction

 Synchronization issues

 Address Translation

PAGE 13

Page - 3

Page - 2

Page - 1

….

P3->P2->P1-
>PZ

Page Y

LRU
List

Thread 1

Thread 2

Synch

Run Time Space

What is LeanStore ?

 LeanStore Overview

 Hold everything in-mem. B-tree layout for pages and pointers as references to data

 Granularity of operations – row level

 Modified buffer manager

 Goal - Inmemory databases to use disks avoiding slow parts of a disk based
database.

PAGE 14

Pointer Swizzling

 Use way to indicate if a page referred is in memory pool or on disk.

 A reference containing an in-memory pointer is called swizzled, one that stores an ondisk
page identifier is called unswizzled.

 Each page reference is 8 byte and is known as a swip.

if (MSB set) then

object in memory

else

object in disk

PAGE 15

Page Replacement Policy

 Conventional policies –

 LRU lists which have overhead of maintaining lists and references and memory

 Using Counters – Extra operations and other concurrency issues

 Random page selection for eviction

PAGE 16

Synchronization

 Pages are organized in a tree hierarchy

 Each page has only one parent, single reference.

 Avoid latches – supported by swips

PAGE 17

Handling Pages Effectively

 Identify pages to be evicted i.e., handle randomness

 Handle page eviction lists or order

 Handle concurrency during eviction

 Handling I/O

PAGE 18

LeanStore Page cycle

PAGE 19

LeanStore Page cycle – Identifying pages for eviction

PAGE 20

LeanStore Page cycle – Handling concurrent page access

PAGE 21

LeanStore Implementation

PAGE 22

 In place modifications
 For structural changes, policy is analogous to two phase locking
 Interleaving buffer frames with page content – cache coherence
 Reusing deleted pages via thread local cache
 Background task support for flushing modified pages
 I/O prefetching
 Hinting

Performance Analysis – In-memory

PAGE 23

Performance analysis – scale out : multiple cores, out of memory

PAGE 24

Performance analysis – Other Measurements

PAGE 25

Conclusion

As per me, in short - “A demand driven page in & out swap based buffer pool with
controlled paths of references and using minimalistic runtime memory.”

PRESENTATION TITLE PAGE 26

Few thoughts

 Pointer swizzling is tweaking unused bits in referenced pointers. Is this a limitation or
way of exploiting unused resources ?

 LeanStore provides page level granularity for holding data. With tuples how is it managed
? Chances are there that a given huge tuple can cross multiple pages and result in splitting
of it.

 LeanStore’s buffer pool : Does it guarantee fair eviction and data localisation ?

 Page Eviction : LRU vs randomly chosen page eviction. What is the guarantee that the
required data swaps in without blocks ?

 Need of the hour : “Hybrid” systems (Disk + In-Memory) Are not these analogous to
conventional databases with if’s and buts ? If yes, are we trying to over engineer
conventional dbs ? If no, what is making them different ?

PAGE 27

References

 Viktor Leis, Michael Haubenschild, Alfons Kemper, Thomas Neumann.
LeanStore: In-Memory Data Management beyond Main Memory. Proc. 34th IEEE
International Conference on Data Engineering, pages 185-196, 2018

 Pictures are taken from google images.

PAGE 28

