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= Demand for low latency, higher processing speed for queries.
= Need for workloads to have higher throughput.
= Bottlenecks

= 1/0 Path
= Concurrent Execution

= Logging

aGe 2 % WATERLOO



Tackling 1/0 Path

= I/0 path is tightly coupled with OS

= Buffering

= Evolving storage technologies like using SDD.
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Tackling 1/0 Path

= Cutting down I/O
= Isit InMemory Database ?
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stavros@hp.com

ABSTRACT

Online Transaction Processing (OLTP) databases include 2 sute
of features — disk-resadent B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimuzed for computer technology of the late 1970°s. Advances
m modern processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years 2g0, such
that many OLTP databases will now fit in mam memory, and
most OLTP transacthions can be processed i mulliseconds or less
Yet database architecture has changed hitle

QUERIES

Based on this observation, we look at some interesting varants of
conventional datshase systems that one mught build that exploa

IN-MEMORY
DATABASE

PERSISTENCE

recent hardware trends, and speculate om thew performance
mE through a detuled instruction-level breskdown of the major com-
ponents mvolved i 2 tamsaction processng database system
MAIN (Shore) runnmg a subset of TRC-C. Rather than simply profiling
Shore, we prog ely modfied it so that after every
MEMURY removal or optimization, we had a (faster) working system that
fully ran our worklcad. Overall, we identify overbeads and opti-
muzations that explam a total dsfference of about a factor of 20x
m raw performance We also show that there 15 no single “high
pole m the temt™ i modern (memory resident ) database systems
but that substantial ime 1S spent m logmng, latchmng, locking, B
tree, and buffer management operations
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OLTP Through the Looking Glass, and What We Found There

Samuel Madden Michael Stonebraker
Massachusetts Institute of Technology
Cambridge, MA

{madden, stonebraker}@csail. mit.edu

L. INTRODUCTION

Modern general purpose onbne tamsaction processing (OLTP)
database systems melude a standard suste of features: a collecton
of on-disk data structures for table storage, incheding heap files
and B-trees, support for multple concurrent quenes via lockmg-
based concurrency control, log-based recovery, and an efficient
buffer manxger. These features were developed to support rans.
acton processing m the [970°s and 19807, when an OLTP data-
base was many times larger than the mam memory, and when the
computers that ran these databases cost bundreds of thowsands to
mulbons of dollars

Today, the situation s quite dafferent Fust modern processors
are very fast such that the computation time for many OLTP
style transactions s measured m macroseconds. For 2 few thoe
sand dollars, a system with gumabytes of mam memory can be
purchased Furthermore, it 15 not uncommeon for mstitutions o
own metworked chusters of many such workstations, wath

e
mite memory measured m hondreds of mizabytes — sufficient to
keep many OLTP databases m RAM

Second, the nse of the Internet, as well as the vanety of data
mtensve apphicabions m use m a oumber of domuns, has led 10 3
nsmg interest in databose-hie apphcations without the full sate
of standard databose features. Operatmg systems and networkmg
conferences are now full of proposals for “database-bke™ storage
systems with varymg forms of consstency, relmbiity, concur-
rency, repbication, and queryabalsty [DGOM, CDG+06, GBH+00.
SMK+01

This nung demand for database-like services, coupled with dra
matic performance improverments and cost reduction m hard-
ware, suggests 3 number of mieresting altermative systems that
coe mught build with a defferemt set of features than those pro-
vaded by standerd OLTP engmes.

LI Alternative DBMS Architectures

Obwvicusly, cptimnng OLTP systems for mam memory s 2 good

idea when a datsbase fits m RAM. But a number of other dats.

base vanants are passible. for example

* Logless databases. A log-free database system mught ether
not need recovery, or might perform recovery from other sites
m a claster (25 was proposed o systems hke Harp [LGG91 |
Harbor [LM06], and C-Store [SAB+0S])

* Single threaded databases Since multvthreading m OLTP
databases was tradibonally important for latency huding m the

T



Tackling Concurrent Execution

= What is a query ? -> Similar operation done on multiple data

= Generalize queries to run in parallel

= Leverage hardware advancements.

F'arall-ql Execution Parallel Execution
Coordinator N Server Processes
SELECT COUNT (*) Server | o >
FEOM employeess 44— Process
WHERE phone number LIEKE "&50%°;
Sarver
Frocess 4 p
Server
Frocess *—>
Sarver
Process 4 p
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= Everything in-memory -> higher throughput.
= Concurrent Execution -> low latency.

= Do we have the fastest database ?
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In-memory datahases Impiementation - Just the heginning

= Underlying OS dependence - Memory management
= Use mmap ??

= Inmemory table layout.
= DataStructures for table mapping |

Key lookup: B-tree vs. memory-optimized table

= Hash Table vs B-tree gl —
= Heavy index usage 1 |
= Concurrency -> increased latches 7% g% X

Matching index record —
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» In-Memory Database and Workloads

Managing Data in-memory & cases

Buffer Manager & Challenges

LeanStore

LeanStore Buffer Pool and Paging Overview

Performance Evaluation

Conclusion & Few Thoughts
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InMemory Datahase and workloads

Run Time Memory

= Everything in-mem 0%0 >
Run time OS
= Scaleout ?
= Increase RAM size +
InMemory Indexes
= RAM is still costly.
= Limited by Address bus size. Pinned Data
Memory
Unpinned Mem
oxFFFF >
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Managing data in-memory

= (Gauge access patterns of data to have them in memory.
= Back to conventional memory management techniques — buffer management.

= No buffer management by H-Store, Hekaton, HANA etc.,
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Managing data in-memory - cases

= AntiCaching

= Microsoft’s Siberia

Application

Execute Txn

Buffer Pool
A —

Primary Storage

(a) Disk-oriented DBMS

Figure 1: DBMS Architectures — In (a) and (b), the disk

(b) Disk-oriented DBMS with a Distributed Cache

the anti-caching model shown in (c). memory is the primary storage and cold data is evicted to disk.
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() Main Memory DBMS with Anti-Caching

is the primary storage for the database and data is brought into main memory as it is needed. With
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Trekking Through Siberia: Managing Cold Data in a
Memory-Optimized Database

Ahmed Eldawy*
University of Minnesota
eldawy@cs.umn.edu

ABSTRACT

Main memories are becoming sufficiently large that most OLTP
databases can be stored entirely in main memory, but this may not
be the best solution. OLTP workloads typically exhibit skewed
access patterns where some records are hot (frequently accessed)
but many records are cold (infrequently or never accessed). It is still
more economical to store the coldest records on secondary storage
such as flash. This paper introduces Sibena, a framework for
managing cold data in the Microsoft Hekaton main-memory
database engine. We discuss how to migrate cold data to secondary
storage while providing an interface to the user to manipulate both
hot and cold data that hides the actual data location. We descnibe
how queries of different isolation levels can read and modify data
stored in both hot and cold stores without restriction while
minimizing number of accesses to cold storage. We also show how
records can be migrated between hot and cold stores while the
DBMS is online and active. Experiments reveal that for cold data
access rates appropriate for main-memory optimized databases, we
incur an acceptable 7-14% throughput loss.

1. INTRODUCTION

Database systems have traditionally been designed under the

assumption that data is disk resident and paged in and out of

memory as needed. However, the drop in memory prices over the
past 30 years is invahidating this assumption. Several database
engines have emerged that store the entire database in main
memory [3,5,7,9, 11, 14, 19]

Microsoft has developed a memory-optimized database engine,
code named Hekaton, targeted for OLTP workloads. The Hekaton
engine is fully integrated into SQL Server and shipped in the 2014
release. It does not require a database be stored entirely in main
memory, a user can declare only some tables to be in-memory
tables managed by Hekaton. Hekaton tables can be quenied and
updated in the same way as regular tables. To speed up processing
even further, a T-SQL stored procedure that references only
Hekaton tables can be compiled into native machine code. Further
details about the design of Hekaton can be found in [4], [11]

OLTP workloads often exhibit skewed access patterns where some
records are “hot” and accessed frequently (the working set) while
others are “cold” and accessed infrequently. Clearly, good

* Work done while at Microsoft Research

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http-/icreativecommons.org/licenses'by-nc-nd/3 0 Obtain
permission prior to any use beyond those covered by the license.  Contact
copyright holder by emailing info@vidb.org Articles from this volume were
invited to present their results at the 40th Intemational Conference on Very
Large Data Bases, September It - 5th 2014, Hangzhou, China

Proceedings of the VLDB Endowm: Vol 7, No. 11

Copyright 2014 VLDB Endowment 2150-8097/14/07

Justin Levandoski
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justin_levandoski@microsoft.com
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Microsoft Research
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performance depends on the hot records residing in memory. Cold
records can be moved to cheaper external storage such as flash with
little effect on overall system performance

The initial version of Hekaton requires that a memory-optimized
table fits entirely in main memory. However, even a frequently
accessed table may exhibit access skew where only a small fraction
of its rows are hot while many rows are cold. We are investigating
techniques to automatically migrate cold rows to a “cold store™
residing on external storage while the hot rows remain in the n-
memory “hot store™. The separation into two stores is only visible
to the storage engine; the upper layers of the engine (and
applications) are entirely unaware of where a row is stored

The goal of our project, called Project Siberia, is to enable the
Hekaton engine to automatically and transparently maintain cold
data on cheaper secondary storage. We divide the problem of
managing cold data into four subproblems

e Cold data classification: efficiently and non-intrusively
identify hot and cold data. We propose to do this by logging
record accesses, possibly only a sample, and estimating
accesses frequencies off line as described in more detail in
[13]. One could also use a traditional caching approach such
as LRU or LRU-2 but the overhead is high in both space and
time. As reported in [I13], experiments showed that
maintaining a simple LRU chain added 25% overhead to the
cost of lookups in an in-memory hash table and added 16 bytes
to each record. This we deemed too high a price

e Cold data storage: evaluation of cold storage device options
and techniques for organizing data on cold storage

o Cold storage access reduction: reducing unnecessary accesses
to cold storage for both point and range lookups by
maintaining compact and accurate in-memory access filters
We propose to achieve this by stonng in memory compact
summaries of the cold store content. We are investigating two
techniques: a version of Bloom filters for point lookups and
range filters, a new compact data structure that also supports
range queries. More details can be found in [1, 17]

. Cold data access and migration mechanisms: mechanisms for
efficiently migrating, reading, and updating data on cold
storage that dovetail with Hekaton's optimistic multi-version
concurrency control scheme [11]

In this paper, we focus on the fourth point, namely, how to migrate
records to and from the cold store and how to access and update
records in the cold store in a transactionally consistent manner. This
paper is not concerned with exact indexing and storage mechanisms
used; all we assume is that the cold store provides methods for
inserting, deleting, and retrieving records. To allow for maximum
flexibility in the choice of cold store implementations our oaly
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Swapping at page level granularity — HStore

Hardware assisted access tracking — Hyper

Optimized storage engines like Bw-Tree/LLAMA

Graefe et al. Swizzling for buffer managers
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Granularity — chunk or page. (almost, similar terms)

Handling References

« Page replacement strategy Page - 1
. Thread 1 S i
= Page eviction Page - 2
Thread 2 > Page - 3 {—> PageY

Synchronization issues

Address Translation

hash tabl ﬁ P3->P2->P1- LRU
[ Table root: P1 Page - 5 SP7Z .
N |l List
\ rlPie[][+——-
/)< [ P2 P4 P3 Synch
P2 P4 P
T>[F2AEL .
P2 Run Time Space W UNIVERSITY OF
- PAGE 13 @ WATERLOO

(a) traditional buffer manager



What is LeanStore ?

» LeanStore Overview

= Hold everything in-mem. B-tree layout for pages and pointers as references to data
= Granularity of operations — row level

= Modified buffer manager

= Goal - Inmemory databases to use disks avoiding slow parts of a disk based

database. B
[
= 60K
|
=. 40K+
®
¢ 20K
o
= ol —
BerkeleyDB Wiredliger LeanStore in-memory

1. Single-threaded in-memory TPC-C performance (100 warehouses).
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= Use way to indicate if a page referred is in memory pool or on disk.

= Areference containing an in-memory pointer is called swizzled, one that stores an ondisk
page identifier is called unswizzled.

= Each page reference is 8 byte and is known as a swip.

if (MSB set) then
object in memory
else

object in disk
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Page Replacement Policy

= Conventional policies —
= LRU lists which have overhead of maintaining lists and references and memory

= Using Counters — Extra operations and other concurrency issues

= Random page selection for eviction

load,

swizzle .. it
' cooling
(RAM)

unswizzle

Fig. 3. The possible states of a page.
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Synchronization

= Pages are organized in a tree hierarchy
= Each page has only one parent, single reference.

= Avoid latches — supported by swips

A mm i .................................................................................
- Ty
" 1
f [
[
L] L
W Y r
r r

hot buffer pool

[more hot pages)
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Handling Pages Effectively

= Identify pages to be evicted i.e., handle randomness
= Handle page eviction lists or order

= Handle concurrency during eviction

= Handling I/0
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LeanStore Page cycle

root
ﬁ@
L [Pl oo hot s | [PAl ot buffer pool :
\P7; P8 :
6] = | B
P2 P3 GT (more hot pages)
|P2 cooling [P8 cooling P3 cold
6 6 8| (being loaded)
hash table hash table
R
0SA| 1
FIFO
queue

cooling stage B in-flight 1/O operations

Fig. 4. Overview of LeanStore’s data structures. Page P1 represents a root

page (e.g.. of a B-tree) with 5 child pages (P7, P8, P2, P3, P4). Pages Pl and

P4 are hot (swizzled), while pages P2 and P8 are cooling (unswizzled). (In

reality, the vast majority of in-memory pages will be classified as hot.) Pages W UNIVERSITY OF
N

P7 and P3 are on persistent storage with P3 currently being loaded. @ WATERLOO



LeanStore Page cycle - ldentifying pages for eviction

1. P4 is randomly selected

for speculative unswizzling P4 hot
2. the buffer manager iterates e PE
over all swips on the page
3. it finds the swizzled child /
page P6 and unswizzles y’
it instead
P6 hot PO hot
& &

Fig. 5. Inner pages can only be unswizzled after all their child pages.
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LeanStore Page cycle — Handling concurrent page access

; FIFO |F’2 cooling § thread-local epochs
hash table queuej 5 e | thread 1 :
- ‘a><: e7 | P2 -] I é OQ | thread 2 :
5 €5 | thread 3
A1 e4 | P8 ‘H\’LlPE cooling :
\ 5 : global epoch :

|- : epoch
cooling stage G manager | €9

Fig. 6. Epoch-based reclamation.
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LeanStore Implementation

= In place modifications

» For structural changes, policy is analogous to two phase locking
» Interleaving buffer frames with page content — cache coherence
» Reusing deleted pages via thread local cache

= Background task support for flushing modified pages

= 1/O pretfetching

* Hinting
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Periormance Analysis — in-memory

§ 60K 1 & in-memory B-tree
@ . - @ 800K 4
g 40K = @ LeanStore
> ] o
= 20K1 = =, 600K -
= —
3 o 3K 48K 62K 67K 5 /
D 600K 1 £ 400K+ .
2 S ¢
—_ - = = ’
£ 400K S E 200K 4 WiredTiger
) o =
o 200K a O BerkeleyDB
o @ : 0+ st
= . 18K 23K 109K 597K O . - - . T

H — - T e a 1 5 10 15 20

dseline +SWILZZIINg +iedn evicl +0pi. [atc
(traaitional ) | ..EE:"'S?C’E = threads
Fig. 7. Impact of the 3 main LeanStore features. Fig. 8. Mulu-threaded, in-memory TPC-C on 10-core system.
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Periormance analysis — scale out : multiple cores, out of memory

TABLE I @
LEANSTORE SCALABILITY RUNNING TPC-C oN 60-CORE NUMA SYSTEM g 600K
emote = \ LeanStore
txns/sec  speedup accesses 3. 400K+
S .

I thread 45K 1.0 7% = D-memay E-iee
60 threads: baseline  1,500K  33.3x 77% £ 200K+ WiodTiges
+ warchouse affinity 2270K  50.4x 77% Q /~/\\—-
+ pre-fault memory 2.370K 52.7x 15% 8 ) m
+ NUMA awareness  2,560K 56.9x 14% = » L3 ! eley : -

0N 41 &N
bt F4y Sy olU

time [sec]

Fig. 9. TPC-C with 20GB buffer pool (100 warehouses, 20 threads). The
data grows from 10GB to 50 GB—exceeding the buffer pool.
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Performance analysis - Other Measurements

. 150M 4 143M (0 IOs) ) .=
8 129M (0 10s) LeanEvict
a - - - - T
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uniform i 15 2 2 601 Sean ¢ 12GB
skew 5] g
Fig. 10. Lookup performance and number of I/O operations per second (20 B .. " 10GB
threads, 5 GB data set, 1 GB buffer pool). o 4.01 ®
? .
uniform  z=1.26  z=15 21556 2z=16 2=17  z=2 S e 8GB
O 201
7
= 2GB
a 1.1+
=
(=] 0.01
3 1.04 —_
< @ 1.57 2GB
bz 0.9+ =
? S 101 8GB
N
S o8/ 2 o5 10GB
o) )
2 0.7+ @D oo0A ' 12'GB/\'
— T - — o 20 40 60
2 1050 9 113\_1 2 ‘030 9 U 50 7 1050 2 1050 2 10 50 time[sec]

% of pages in cooling stage [log scale]
Fig. 12. Concurrent scan of the 0.7 GB order table and the 10GB orderline VERSITY OF

PAGE table using buffer pool sizes between 2GB and 12 GB. \TE R Loo

Fig. 11.  Effect of cooling stage size on throughput. The throughput is
normalized by the 10% cooling pages setting.



As per me, in short - “A demand driven page in & out swap based buffer pool with
controlled paths of references and using minimalistic runtime memory.”
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Few thoughts

= Pointer swizzling is tweaking unused bits in referenced pointers. Is this a limitation or
way of exploiting unused resources ?

= LeanStore provides page level granularity for holding data. With tuples how is it managed
? Chances are there that a given huge tuple can cross multiple pages and result in splitting
of it.

= LeanStore’s buffer pool : Does it guarantee fair eviction and data localisation ?

= Page Eviction : LRU vs randomly chosen page eviction. What is the guarantee that the
required data swaps in without blocks ?

= Need of the hour : “Hybrid” systems (Disk + In-Memory) Are not these analogous to
conventional databases with if’'s and buts ? If yes, are we trying to over engineer
conventional dbs ? If no, what is making them different ?
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= Viktor Leis, Michael Haubenschild, Alfons Kemper, Thomas Neumann.

LeanStore: In-Memory Data Management beyond Main Memory. Proc. 34th IEEE
International Conference on Data Engineering, pages 185-196, 2018

= Pictures are taken from google images.
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