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Basis

 Demand for low latency, higher processing speed for queries.

 Need for workloads to have higher throughput.

 Bottlenecks 

 I/O Path

 Concurrent Execution

 Logging
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Tackling I/O Path

 I/O path is tightly coupled with OS

 Buffering

 Evolving storage technologies like using SDD. 
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Tackling I/O Path
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 Cutting down I/O
 Is it InMemory Database ? 



Tackling Concurrent Execution

 What is a query ? -> Similar operation done on multiple data 

 Generalize queries to run in parallel

 Leverage hardware advancements. 
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Quick Insights

 Everything in-memory -> higher throughput.

 Concurrent Execution -> low latency.

 Do we have the fastest database ? 
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In-memory databases Implementation – Just the beginning
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 Underlying OS dependence - Memory management
 Use mmap ??
 Inmemory table layout.
 DataStructures for table mapping 
 Hash Table vs B-tree  
 Heavy index usage
 Concurrency -> increased latches 



RoadMap

 In-Memory Database and Workloads

 Managing Data in-memory & cases

 Buffer Manager & Challenges

 LeanStore

 LeanStore Buffer Pool and Paging Overview

 Performance Evaluation

 Conclusion & Few Thoughts
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InMemory Database and workloads 

 Everything in-mem

 Scaleout ?

 Increase RAM size

 RAM is still costly. 

 Limited by Address bus size. 
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Managing data in-memory

 Gauge access patterns of data to have them in memory.

 Back to conventional memory management techniques – buffer management.

 No buffer management by H-Store, Hekaton, HANA etc.,
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Managing data in-memory – cases  

 AntiCaching

 Microsoft’s Siberia
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Other Cases

 Swapping at page level granularity – HStore

 Hardware assisted access tracking – Hyper

 Optimized storage engines like Bw-Tree/LLAMA

 Graefe et al. Swizzling for buffer managers
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Buffer Manager - Challenges

 Granularity – chunk or page. (almost, similar terms)

 Handling References

 Page replacement strategy 

 Page eviction

 Synchronization issues

 Address Translation
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What is LeanStore ? 

 LeanStore Overview 

 Hold everything in-mem. B-tree layout for pages and pointers as references to data

 Granularity of operations – row level

 Modified buffer manager 

 Goal - Inmemory databases to use disks avoiding slow parts of a disk based 
database.
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Pointer Swizzling

 Use way to indicate if a page referred is in memory pool or on disk. 

 A reference containing an in-memory pointer is called swizzled, one that stores an ondisk
page identifier is called unswizzled. 

 Each page reference is 8 byte and is known as a swip.

if ( MSB set )  then

object in memory

else 

object in disk

PAGE  15



Page Replacement Policy

 Conventional policies –

 LRU lists which have overhead of maintaining lists and references and memory

 Using Counters – Extra operations and other concurrency issues

 Random page selection for eviction
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Synchronization

 Pages are organized in a tree hierarchy

 Each page has only one parent, single reference.

 Avoid latches – supported by swips
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Handling Pages Effectively

 Identify pages to be evicted i.e., handle randomness 

 Handle page eviction lists or order

 Handle concurrency during eviction

 Handling I/O 
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LeanStore Page cycle
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LeanStore Page cycle – Identifying pages for eviction
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LeanStore Page cycle – Handling concurrent page access
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LeanStore Implementation
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 In place modifications
 For structural changes, policy is analogous to two phase locking
 Interleaving buffer frames with page content – cache coherence
 Reusing deleted pages via thread local cache
 Background task support for flushing modified pages
 I/O prefetching
 Hinting



Performance Analysis – In-memory
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Performance analysis – scale out : multiple cores, out of memory
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Performance analysis – Other Measurements
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Conclusion

As per me, in short - “A demand driven page in & out swap based buffer pool with 
controlled paths of references and using minimalistic runtime memory.” 
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Few thoughts

 Pointer swizzling is tweaking unused bits in referenced pointers. Is this a limitation or
way of exploiting unused resources ?

 LeanStore provides page level granularity for holding data. With tuples how is it managed
? Chances are there that a given huge tuple can cross multiple pages and result in splitting
of it.

 LeanStore’s buffer pool : Does it guarantee fair eviction and data localisation ?

 Page Eviction : LRU vs randomly chosen page eviction. What is the guarantee that the
required data swaps in without blocks ?

 Need of the hour : “Hybrid” systems (Disk + In-Memory) Are not these analogous to
conventional databases with if’s and buts ? If yes, are we trying to over engineer
conventional dbs ? If no, what is making them different ?
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